入门
本指南将帮助你安装 Koog 并创建你的第一个 AI 代理。
前提条件
在开始之前,请确保你已具备以下条件:
- 一个使用 Gradle 或 Maven 的 Kotlin/JVM 项目。
- 已安装 Java 17+。
- 你首选的 LLM 提供商的有效 API 密钥(Ollama 无需此密钥,因为它在本地运行)。
安装 Koog
要使用 Koog,你需要在构建配置中包含所有必要的依赖项。
NOTE
将 LATEST_VERSION 替换为 Maven Central 上发布的最新 Koog 版本。
=== "Gradle (Kotlin DSL)"
1. 将依赖项添加到 `build.gradle.kts` 文件。
```kotlin
dependencies {
implementation("ai.koog:koog-agents:LATEST_VERSION")
}
```
2. 确保 `mavenCentral()` 在版本库列表中。
```kotlin
repositories {
mavenCentral()
}
```
=== "Gradle (Groovy)"
1. 将依赖项添加到 `build.gradle` 文件。
```groovy
dependencies {
implementation 'ai.koog:koog-agents:LATEST_VERSION'
}
```
2. 确保 `mavenCentral()` 在版本库列表中。
```groovy
repositories {
mavenCentral()
}
```
=== "Maven"
1. 将依赖项添加到 `pom.xml` 文件。
```xml
<dependency>
<groupId>ai.koog</groupId>
<artifactId>koog-agents-jvm</artifactId>
<version>LATEST_VERSION</version>
</dependency>
```
2. 确保 `mavenCentral()` 在版本库列表中。
```xml
<repositories>
<repository>
<id>mavenCentral</id>
<url>https://repo1.maven.org/maven2/</url>
</repository>
</repositories>
```
NOTE
将 Koog 与 Ktor 服务器、Spring 应用程序或 MCP 工具集成时, 你需要在构建配置中包含额外的依赖项。 关于确切的依赖项,请参考 Koog 文档中的相关页面。
设置 API 密钥
TIP
使用环境变量或安全的配置管理系统来存储你的 API 密钥。 避免将 API 密钥直接硬编码到你的源代码中。
=== "OpenAI"
获取你的 [API 密钥](https://platform.openai.com/api-keys)并将其作为环境变量赋值。
=== "Linux/macOS"
```bash
export OPENAI_API_KEY=your-api-key
```
=== "Windows"
```shell
setx OPENAI_API_KEY "your-api-key"
```
重启你的终端以应用更改。你现在可以检索并使用 API 密钥来创建代理。
=== "Anthropic"
获取你的 [API 密钥](https://console.anthropic.com/settings/keys)并将其作为环境变量赋值。
=== "Linux/macOS"
```bash
export ANTHROPIC_API_KEY=your-api-key
```
=== "Windows"
```shell
setx ANTHROPIC_API_KEY "your-api-key"
```
重启你的终端以应用更改。你现在可以检索并使用 API 密钥来创建代理。
=== "Google"
获取你的 [API 密钥](https://aistudio.google.com/app/api-keys)并将其作为环境变量赋值。
=== "Linux/macOS"
```bash
export GOOGLE_API_KEY=your-api-key
```
=== "Windows"
```shell
setx GOOGLE_API_KEY "your-api-key"
```
重启你的终端以应用更改。你现在可以检索并使用 API 密钥来创建代理。
=== "DeepSeek"
获取你的 [API 密钥](https://platform.deepseek.com/api_keys)并将其作为环境变量赋值。
=== "Linux/macOS"
```bash
export DEEPSEEK_API_KEY=your-api-key
```
=== "Windows"
```shell
setx DEEPSEEK_API_KEY "your-api-key"
```
重启你的终端以应用更改。你现在可以检索并使用 API 密钥来创建代理。
=== "OpenRouter"
获取你的 [API 密钥](https://openrouter.ai/keys)并将其作为环境变量赋值。
=== "Linux/macOS"
```bash
export OPENROUTER_API_KEY=your-api-key
```
=== "Windows"
```shell
setx OPENROUTER_API_KEY "your-api-key"
```
重启你的终端以应用更改。你现在可以检索并使用 API 密钥来创建代理。
=== "Bedrock"
获取有效的 [AWS 凭据](https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_bedrock.html)(访问密钥和秘密密钥)并将其作为环境变量赋值。
=== "Linux/macOS"
```bash
export AWS_BEDROCK_ACCESS_KEY=your-access-key
export AWS_BEDROCK_SECRET_ACCESS_KEY=your-secret-access-key
```
=== "Windows"
```shell
setx AWS_BEDROCK_ACCESS_KEY "your-access-key"
setx AWS_BEDROCK_SECRET_ACCESS_KEY "your-secret-access-key"
```
重启你的终端以应用更改。你现在可以检索并使用 API 密钥来创建代理。
=== "Ollama"
安装 Ollama 并在本地运行模型,无需 API 密钥。
关于更多信息,请参见 [Ollama 文档](https://docs.ollama.com/quickstart)。
创建并运行代理
=== "OpenAI"
下面的示例使用 [`GPT-4o`](https://platform.openai.com/docs/models/gpt-4o) 模型创建并运行一个简单的 AI 代理。
<!--- INCLUDE
import ai.koog.agents.core.agent.AIAgent
import ai.koog.prompt.executor.llms.all.simpleOpenAIExecutor
import ai.koog.prompt.executor.clients.openai.OpenAIModels
import kotlinx.coroutines.runBlocking
-->
```kotlin
fun main() = runBlocking {
// 从 OPENAI_API_KEY 环境变量获取 API 密钥
val apiKey = System.getenv("OPENAI_API_KEY")
?: error("The API key is not set.")
// 创建代理
val agent = AIAgent(
promptExecutor = simpleOpenAIExecutor(apiKey),
llmModel = OpenAIModels.Chat.GPT4o
)
// 运行代理
val result = agent.run("Hello! How can you help me?")
println(result)
}
```
<!--- KNIT example-getting-started-01.kt -->
该示例可以产生以下输出:
```
Hello! I'm here to help you with whatever you need. Here are just a few things I can do:
- Answer questions.
- Explain concepts or topics you're curious about.
- Provide step-by-step instructions for tasks.
- Offer advice, notes, or ideas.
- Help with research or summarize complex material.
- Write or edit text, emails, or other documents.
- Brainstorm creative projects or solutions.
- Solve problems or calculations.
Let me know what you need help with—I’m here for you!
```
=== "Anthropic"
下面的示例使用 [`Claude Opus 4.1`](https://www.anthropic.com/news/claude-opus-4-1) 模型创建并运行一个简单的 AI 代理。
<!--- INCLUDE
import ai.koog.agents.core.agent.AIAgent
import ai.koog.prompt.executor.llms.all.simpleAnthropicExecutor
import ai.koog.prompt.executor.clients.anthropic.AnthropicModels
import kotlinx.coroutines.runBlocking
-->
```kotlin
fun main() = runBlocking {
// 从 ANTHROPIC_API_KEY 环境变量获取 API 密钥
val apiKey = System.getenv("ANTHROPIC_API_KEY")
?: error("The API key is not set.")
// 创建代理
val agent = AIAgent(
promptExecutor = simpleAnthropicExecutor(apiKey),
llmModel = AnthropicModels.Opus_4_1
)
// 运行代理
val result = agent.run("Hello! How can you help me?")
println(result)
}
```
<!--- KNIT example-getting-started-02.kt -->
该示例可以产生以下输出:
```
Hello! I can help you with:
- **Answering questions** and explaining topics
- **Writing** - drafting, editing, proofreading
- **Learning** - homework, math, study help
- **Problem-solving** and brainstorming
- **Research** and information finding
- **General tasks** - instructions, planning, recommendations
What do you need help with today?
```
=== "Google"
下面的示例使用 [`Gemini 2.5 Pro`](https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-5-pro) 模型创建并运行一个简单的 AI 代理。
<!--- INCLUDE
import ai.koog.agents.core.agent.AIAgent
import ai.koog.prompt.executor.llms.all.simpleGoogleAIExecutor
import ai.koog.prompt.executor.clients.google.GoogleModels
import kotlinx.coroutines.runBlocking
-->
```kotlin
fun main() = runBlocking {
// 从 GOOGLE_API_KEY 环境变量获取 API 密钥
val apiKey = System.getenv("GOOGLE_API_KEY")
?: error("The API key is not set.")
// 创建代理
val agent = AIAgent(
promptExecutor = simpleGoogleAIExecutor(apiKey),
llmModel = GoogleModels.Gemini2_5Pro
)
// 运行代理
val result = agent.run("Hello! How can you help me?")
println(result)
}
```
<!--- KNIT example-getting-started-03.kt -->
该示例可以产生以下输出:
```
I'm an AI that can help you with tasks involving language and information. You can ask me to:
* **Answer questions**
* **Write or edit text** (emails, stories, code, etc.)
* **Brainstorm ideas**
* **Summarize long documents**
* **Plan things** (like trips or projects)
* **Be a creative partner**
Just tell me what you need
```
=== "DeepSeek"
下面的示例使用 `deepseek-chat` 模型创建并运行一个简单的 AI 代理。
<!--- INCLUDE
import ai.koog.agents.core.agent.AIAgent
import ai.koog.prompt.executor.clients.deepseek.DeepSeekLLMClient
import ai.koog.prompt.executor.llms.SingleLLMPromptExecutor
import ai.koog.prompt.executor.clients.deepseek.DeepSeekModels
import kotlinx.coroutines.runBlocking
-->
```kotlin
fun main() = runBlocking {
// 从 DEEPSEEK_API_KEY 环境变量获取 API 密钥
val apiKey = System.getenv("DEEPSEEK_API_KEY")
?: error("The API key is not set.")
// 创建 LLM 客户端
val deepSeekClient = DeepSeekLLMClient(apiKey)
// 创建代理
val agent = AIAgent(
// 使用 LLM 客户端创建提示执行器
promptExecutor = SingleLLMPromptExecutor(deepSeekClient),
// 提供模型
llmModel = DeepSeekModels.DeepSeekChat
)
// 运行代理
val result = agent.run("Hello! How can you help me?")
println(result)
}
```
<!--- KNIT example-getting-started-04.kt -->
该示例可以产生以下输出:
```
Hello! I'm here to assist you with a wide range of tasks, including answering questions, providing information, helping with problem-solving, offering creative ideas, and even just chatting. Whether you need help with research, writing, learning something new, or simply want to discuss a topic, feel free to ask—I’m happy to help! 😊
```
=== "OpenRouter"
下面的示例使用 [`GPT-4o`](https://openrouter.ai/openai/gpt-4o) 模型创建并运行一个简单的 AI 代理。
<!--- INCLUDE
import ai.koog.agents.core.agent.AIAgent
import ai.koog.prompt.executor.llms.all.simpleOpenRouterExecutor
import ai.koog.prompt.executor.clients.openrouter.OpenRouterModels
import kotlinx.coroutines.runBlocking
-->
```kotlin
fun main() = runBlocking {
// 从 OPENROUTER_API_KEY 环境变量获取 API 密钥
val apiKey = System.getenv("OPENROUTER_API_KEY")
?: error("The API key is not set.")
// 创建代理
val agent = AIAgent(
promptExecutor = simpleOpenRouterExecutor(apiKey),
llmModel = OpenRouterModels.GPT4o
)
// 运行代理
val result = agent.run("Hello! How can you help me?")
println(result)
}
```
<!--- KNIT example-getting-started-05.kt -->
该示例可以产生以下输出:
```
I can answer questions, help with writing, solve problems, organize tasks, and more—just let me know what you need!
```
=== "Bedrock"
下面的示例使用 [`Claude Sonnet 4.5`](https://www.anthropic.com/news/claude-sonnet-4-5) 模型创建并运行一个简单的 AI 代理。
<!--- INCLUDE
import ai.koog.agents.core.agent.AIAgent
import ai.koog.prompt.executor.llms.all.simpleBedrockExecutor
import ai.koog.prompt.executor.clients.bedrock.BedrockModels
import kotlinx.coroutines.runBlocking
-->
```kotlin
fun main() = runBlocking {
// 从 AWS_BEDROCK_ACCESS_KEY 和 AWS_BEDROCK_SECRET_ACCESS_KEY 环境变量获取访问密钥
val awsAccessKeyId = System.getenv("AWS_BEDROCK_ACCESS_KEY")
?: error("The access key is not set.")
val awsSecretAccessKey = System.getenv("AWS_BEDROCK_SECRET_ACCESS_KEY")
?: error("The secret access key is not set.")
// 创建代理
val agent = AIAgent(
promptExecutor = simpleBedrockExecutor(awsAccessKeyId, awsSecretAccessKey),
llmModel = BedrockModels.AnthropicClaude4_5Sonnet
)
// 运行代理
val result = agent.run("Hello! How can you help me?")
println(result)
}
```
<!--- KNIT example-getting-started-06.kt -->
该示例可以产生以下输出:
```
Hello! I'm a helpful assistant and I can assist you in many ways, including:
- **Answering questions** on a wide range of topics (science, history, technology, etc.)
- **Writing help** - drafting emails, essays, creative content, or editing text
- **Problem-solving** - working through math problems, logic puzzles, or troubleshooting issues
- **Learning support** - explaining concepts, providing study notes, or tutoring
- **Planning & organizing** - helping with projects, schedules, or breaking down tasks
- **Coding assistance** - explaining programming concepts or helping debug code
- **Creative brainstorming** - generating ideas for projects, stories, or solutions
- **General conversation** - discussing topics or just chatting
What would you like help with today?
```
=== "Ollama"
下面的示例使用 [`llama3.2`](https://ollama.com/library/llama3.2) 模型创建并运行一个简单的 AI 代理。
<!--- INCLUDE
import ai.koog.agents.core.agent.AIAgent
import ai.koog.prompt.executor.llms.all.simpleOllamaAIExecutor
import ai.koog.prompt.llm.OllamaModels
import kotlinx.coroutines.runBlocking
-->
```kotlin
fun main() = runBlocking {
// 创建代理
val agent = AIAgent(
promptExecutor = simpleOllamaAIExecutor(),
llmModel = OllamaModels.Meta.LLAMA_3_2
)
// 运行代理
val result = agent.run("Hello! How can you help me?")
println(result)
}
```
<!--- KNIT example-getting-started-07.kt -->
该示例可以产生以下输出:
```
I can assist with various tasks such as answering questions, providing information, and even helping with language-related tasks like proofreading or writing suggestions. What's on your mind today?
```
